活塞杆气缸的结构与原理介绍
活塞杆气缸的结构与原理介绍
气缸的结构:除尘气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构:
缸筒:缸筒的内径大小代表了气缸输出力的大小.活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um.对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀.缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜.小型气缸有使用不锈钢管的.带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质.SMCCM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母.2)端盖:气缸端盖上设有进排气通口,油的还在端盖内设有缓冲机构.杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内.杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命.导向套通常使用烧结含油合金、前倾铜铸件.端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的. 除尘配件的主要作用:*,双极荷电器有一组正、负相间的平行通道,气体和灰尘通过时,按通道的正或负,分别获得正电荷或负电荷。这样,灰尘一半荷正电,一半荷负电。第二, 专门设计的、对粒径有选择性的混合系(SSMS), 既能使气体中荷正电的细粒子与从相邻负极性通道流出的荷负电的粗粒子混合,又能使荷负电的细粒子与荷正电的粗粒子混合。由于静电力随着距离的加大而迅速减小,因此 重要的是SSMS 要能使得细粒子尽可能地接近带相反极性的大粒子,以保持足够的静电力促使粒子凝聚在一起。现场全尺寸试验同样表明BEAP 使得细粒子减少了一半以上。
活塞杆气缸的结构和原理介绍
1)缸筒:缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖:端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3)活塞:活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
4)活塞杆:活塞杆是气缸中zui重要的受力零件。通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。
5)密封圈:回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。
缸筒与端盖的连接方法主要有以下几种:
整体型、铆接型、螺纹联接型、法兰型、拉杆型。
6)气缸工作时要靠压缩空气中的油雾对活塞进行润滑。也有小部分免润滑气缸。
根据工作所需力的大小来确定活塞杆上的推力和拉力。由此来选择气缸时应使气缸的输出力稍有余量。若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。
活塞杆气缸的结构与原理介绍
- 上一篇:活塞杆出现变色现象的原因?
- 下一篇:ASCO电磁阀选型注意事项